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Introduction

Continuous glucose monitors (CGMs) have revolutionized 
care for individuals with type 1 diabetes (T1D),1 as CGMs 
allow continuous insight into blood glucose (BG) and are 
essential components of artificial pancreas (AP) systems that 
automate BG management. Blood glucose simulators have 
enabled testing new BG control algorithms2 and benchmark-
ing BG forecasting performance. For simulations to be pre-
dictive of real-world performance, though, the data must 
contain the properties that make BG forecasting and control 
challenging.

Most BG simulations use domain knowledge to create 
generative models that capture the dynamics between BG, 
insulin, meals (eg, UVA/PADOVA model),3 and physical 
activity.4 However, there is a significant BG forecasting per-
formance gap between simulations and real data (root mean 

square error [RMSE] simulated: 9.38; real: 21.07)5 with sim-
ilar gaps reported elsewhere.6-8 Part of this is due to the 
incompleteness of the simulation system, as it does not 
include factors affecting BG such as stress9 and the influence 
of fats and protein on glycemic profile of a meal.10 Adding 
intra-subject variation via model parameters can improve 
simulations but does not close the performance gap even 
with ±30% variation (simulated: 10.90; real: 19.03).8 More 
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Abstract
Background: Simulated data are a powerful tool for research, enabling benchmarking of blood glucose (BG) forecasting and 
control algorithms. However, expert created models provide an unrealistic view of real-world performance, as they lack the 
features that make real data challenging, while black-box approaches such as generative adversarial networks do not enable 
systematic tests to diagnose model performance.

Methods: To address this, we propose a method that learns missingness and error properties of continuous glucose 
monitor (CGM) data collected from people with type 1 diabetes (OpenAPS, OhioT1DM, RCT, and Racial-Disparity), and 
then augments simulated BG data with these properties. On the task of BG forecasting, we test how well our method brings 
performance closer to that of real CGM data compared with current simulation practices for missing data (random dropout) 
and error (Gaussian noise, CGM error model).

Results: Our methods had the smallest performance difference versus real data compared with random dropout and 
Gaussian noise when individually testing the effects of missing data and error on simulated BG in most cases. When combined, 
our approach was significantly better than Gaussian noise and random dropout for all data sets except OhioT1DM. Our 
error model significantly improved results on diverse data sets.

Conclusions: We find a significant gap between BG forecasting performance on simulated and real data, and our method 
can be used to close this gap. This will enable researchers to rigorously test algorithms and provide realistic estimates of 
real-world performance without overfitting to real data or at the expense of data collection.
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knowledge may help overcome these obstacles, but we 
hypothesize that the complications of real data pose the main 
challenge for machine learning (ML). Hence, we focus on 
data challenges of missing data and error as (1) they are 
inherent to CGM data, (2) smoothing and imputation are 
common preprocessing steps for CGM data, and (3) per-
forming both leads to smaller RMSE compared with when 
neither (or just one) is performed.11

In most BG simulations, a CGM error model12,13 is used 
to capture sensor error. However, these models: (1) focus 
only on sensor-related properties and do not capture varia-
tions in data sets like demographics that affect BG values 
differently14,15; (2) require subjects to wear multiple sensors 
and have frequent finger-stick BG readings, which are 
impractical for routine use13,16; and (3) do not capture factors 
like motion artifacts17 and other forms of error like pressure-
induced sensor attenuations.18,19 Missing data are often simu-
lated using random dropout20 where a percentage of 
observations is deleted.21,22 However, this assumes data are 
missing completely at random, which is not true for CGM. 
Drecogna et al23 modeled gaps in CGM data using a two-
state Markov model, but only replicated statistics (eg, num-
ber of gaps) and did not account for gaps due to other 
observed variables (eg, a person’s vigorous exercise causing 
a CGM sensor to be disconnected).

One way to overcome these challenges is to learn a simu-
lation model directly from data. Recent work using this 
approach has simulated CGM using generative adversarial 
networks (GANs) conditioned on HbA1C24 or the presence 
of hypo/hyperglycemia.25,26 However, GANs have privacy 
issues as individuals can be re-identified,27and in addition, 
they are black-box models, which means ablation studies 
(eg, BG forecasting with or without missing data) cannot be 
performed.

To address the challenges of creating realistic simulated 
BG, we propose data-augmented simulation (DAS), a hybrid 
approach that is modular (like knowledge-based methods) 
and realistic (like data-driven methods) by augmenting simu-
lated data with real data properties. We focus on BG simula-
tion for individuals with T1D and incorporate data 
set–specific errors and missingness patterns. We apply DAS 
to real-world data sets collected from different populations 
(varied age, race) with different protocols (data duration and 
sampling frequency).

Methods

We first discuss how we learn data properties from CGM 
data, and then how we augment simulated BG with these 
properties (see Figure 1 for an overview).

Learning Data Properties From Real Data

We define a multivariate time series as X x x xT= …{ , , , }1 2  
∈ ×RD T , where xt is a vector of observations. We learn the 
patterns of missing data and error for CGM readings ( ):v T1 , 
which is a noisy estimate of finger-stick BG readings ( )�:g T1 . 
While finger-stick BG readings are error prone,28,29 we use 
them as ground truth as they are more accurate than CGM 
readings.

Missing data model. To learn the patterns of missingness, we 
frame it as a two-part problem where we predict the start and 
then duration of a missing interval. Predicting the start of a 
missing interval at time t is a multivariate classification task 
where we use a window of observations Xt wt− −: 1 to determine 
whether vt  is the start of a missing interval. The window of 
observations consists of CGM data, binary meal indicator  

Figure 1. An overview of our methods for making simulated BG data more realistic. We begin with a simulation model that generates 
simulated BG, learns missing data and error patterns from real diabetes data sets, and finally augments simulated BG data with these 
learned properties.
Abbreviation: BG, blood glucose.
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(1 during a meal, 0 otherwise), time since last observed CGM 
value, hour of the day, and day of the week. We select these 
variables to account for when CGM data are both missing at 
random and missing not at random. We use w in the range 
[wmin : f : wmax], where wmin and f are the sampling frequency 
of  v, to learn patterns of different lengths as the time between 
missing intervals varies.

To predict the duration of a missing interval z, we learn a 
second function. As there is no established feature set for 
learning the duration of missing intervals, we examined 
many features (Table 1) extracted from a window wl of CGM 
data from the start of the missing interval. While the duration 
z can vary in length, we restrict the maximum value because: 
(1) larger missing intervals are often not representative of 
actual missing intervals and (2) there are typically fewer 
samples to learn from. The maximum duration, zmax, set 
based on domain knowledge, is two hours here.

Error model. We first discuss how to learn an error model 
when we have both finger-stick and CGM data, before dis-
cussing the case when only CGM is available. When BG is 
available, we align CGM and BG values using the Poincaré 
plot approach30 on the entire data set. This is necessary as 
CGM values are delayed relative to finger-stick BG and this 
delay may vary across individuals. When BG is absent, we 
approximate it using smoothed CGM data as our reference. 
While we cannot identify errors such as all CGM readings 
being shifted higher or lower than finger-stick BG due to 
errors in sensor calibration, smoothing allows us to identify 
outlying values and erroneous spikes. Given an observation 
vt  and its corresponding ground truth gt, we extract time 
series features in Table 1 to predict the error e v gt t t:= −  using 
a regression model (see Supplemental Appendix A for fea-
ture importance for missing data and error).

Augmenting Simulated Blood Glucose Data With 
Real Data Properties

To add the learned properties to simulated BG, we use a 
post-processing step. The input is simulated BG and the 
outputs are a missingness vector m T1 0 1: { , }∈  (0 indicates 
missing) and a vector of predicted error values e RT1: ∈ . 
Simulated BG is generated using the UVA/PADOVA simu-
lator (see Supplemental Appendix B for details on data 
simulation).

Augmenting simulated blood glucose with missing data. To pre-
dict when missing data occur, we begin by extracting win-
dows of length wmin to wmax and iteratively performing 
prediction until a window is classified as missing. To deter-
mine whether to accept these predictions, we use the preci-
sion P from the learning phase as the probability of correctly 
predicting the start of a missing interval using a binomial 
trial ( , )1 P . Hence, for each prediction, we have:

y
B P if output

if output
* , ,

,
= ( ) =

=





1 1

0 0

where y* indicates whether a timepoint is the start of a miss-
ing interval. Once the start of an interval is identified, we 
predict the length of the missing data using a history window 
wl from that time point. We move forward to the time point 
after the last predicted missing entry and repeat the process 
until the end of the time series. For time points t  that are 
missing, we set mt =0 and mask them as NaNs (see Figure 1 
in Supplemental Appendix C for an overview of this 
process).

Augmenting simulated blood glucose with error. To add error to 
simulated data, we extract history windows of size werror  to 
create feature vectors, and then use this to predict the errors, 
leading to a vector of error values, e T1: . We then sum each t 
and its predicted error et to get the final simulated data set.

Experiments

Data Sets

We first describe the real data sets (see Table 2) and then 
simulated data sets generated to match the features of each. 
To avoid leakage, we divide real data sets into a 70/30% sub-
set for learning data properties and forecasting except for 
OhioT1DM where it is six weeks/two weeks due to its size 
(see Supplemental Appendix D for details on data subsets).

OhioT1DM31: It has been used for benchmarking BG 
forecasting methods. As it is relatively small and con-
trolled, results may not be representative of performance 
on other data sets.11

OpenAPS32: It is from people using an open-source AP 
who elect to donate their data. It is patient generated; so, 

Table 1. Time Series Features used for Error Modeling and Predicting the Length of Missing Intervals.

Statistical features Interquartile range, kurtosis, maximum, minimum, mean, mean absolute deviation, median, median absolute 
deviation, root mean square, skew, standard deviation, variance

Temporal features Area under the curve, autocorrelation, centroid, entropy, mean absolute difference, mean difference, median 
absolute difference, median difference, negative turning points, neighborhood peaks, peak to peak distance, 
positive turning points, signal distance, sum absolute difference
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it provides a useful comparison with highly controlled 
data sets.
RCT33: It was collected during a randomized trial testing 
the use of CGM without BG confirmations. It is larger 
than OhioT1DM and thus provides a better comparison 
for data collected in a controlled setting.
Racial-Disparity34: It was collected in a study testing if 
there is a difference between mean glucose and HbA1c in 
non-Hispanic black and white people with T1D. It has a 
higher proportion of black participants (54%) and a larger 
age range (5-72 years) compared with other data sets, 
which allows us to test with a different population. Note 
that the CGM sampling interval is 15 minutes compared 
with 5 minutes in other data sets.
Simulated Data: It is generated to match the characteris-
tics (average days of data, meal information, age group) 
of real data sets. For example, Sim-OpenAPS is generated 
for 10 adults with 308 days of data per subject (see 
Supplemental Appendix B for details on simulation).

Experiments for learning data properties. To predict the start 
of missing intervals, we train a recurrent neural network 
(RNN) with a hidden layer of 32 units, batch size of 128, 
maximum epochs of 100, and early stopping of 15 epochs. 
We use a fivefold cross-validation split across patients (a fur-
ther split of the 70%) and report performance using the area 
under the receiver operating curve (AUROC) and the area 
under the precision-recall curve (AUPRC). For predicting 
the length of missing intervals, we train a random forest (RF) 
regressor. For predicting errors, we train an Xgboost regres-
sor except for Racial-Disparity, where RF was used as this 
provided better performance. We evaluate the performance 
of predicting the length of missing intervals and errors using 

the RMSE (RMSE is defined as: i

n

i ih h n
=∑ −
1

2( ) /*
. When 

Table 2. Characteristics of Real T1D Data Sets.

Data sets OhioT1DM OpenAPS RCT Racial-Disparity

Number of subjects 12 86 226 227
Average days of data 54 ± 3.02 307.7 ± 246.48 234.3 ± 36 74.4 ± 20.5
Median days of dataa 54.9 (2.52) 233.1 (289.8) 257.4 (45.56) 83.9 (8.32)
Variables collected CGM, finger-stick BG, 

basal rates, bolus doses, 
physiological sensor 
readings, and meal size  
and times

CGM, basal rates, bolus 
doses, and meal size and 
times

CGM, finger-stick BG, 
basal rates, bolus doses, 
and self-reported 
information

CGM, finger-stick BG, 
basal rates, bolus doses, 
and mealtimes

Number of BG values 4762 NA 506,394 49,130
Number of CGM values 166,533 7,221,371 13,841,924 1,259,072
Percentage of CGM values 

missing for less than two 
hoursb

1.84% 7.09% 4.01% 0.24%

Abbreviations: T1D, type 1 diabetes; T1DM, type 1 diabetes mellitus; CGM, continuous glucose monitor; BG, blood glucose; NA, not applicable.
aMedian is reported with the interquartile range in parenthesis.
bWe selected 2 hours because it is the maximum length of a missing window we consider for CGM.

computing the RMSE for duration of missing intervals, hi
* is 

the predicted duration and hi is the actual duration. For com-
puting the RMSE when predicting error values, hi is  
the actual error of CGM data relative to BG at timepoint t  
(ie, CGM BGt t− ) while hi

*  is the predicted error value). We 
use a leave-one-out cross-validation for OhioT1DM due to 
its small size (see Supplemental Appendix E for full details).

Experiments for blood glucose forecasting on simulated 
data. We aim to test whether our method for augmenting 
simulated BG (Dropout-predicted and Error-predicted) 
brings performance closer to real CGM compared with 
current practice. We compare against current BG simula-
tion practices:

•• Dropout-random: We delete a percentage of observa-
tions based on the average percent of missing data (up 
to the maximum gap size of two hours from missing 
data experiments) in each real data set. These are 
1.71% for OhioT1DM, 7.40% for OpenAPS, 4.12% 
for RCT, and 0.27% for Racial-Disparity.

•• Error-Gaussian: We add Gaussian noise of  
N(0.4mg/dL) within the 15% required error range for 
CGM sensors.

•• Error-CGM: We add noise using a CGM error model12 
that is not specific to any data set.

For forecasting, we use the same set of models as Hameed 
& Kleinberg,11 including linear regression (REG), RF, RNN, 
and long short-term memory (LSTM). We report the differ-
ence in the mean RMSE (over ten runs) between real and 
simulated data as mRMSE mRMSE mRMSEdiff real sim= − , 
where mRMSEreal  and mRMSEsim are the mean RMSE on 
real and simulated data sets. A smaller mRMSEdiff  indicates a 
closer performance of simulated data to real data. For REG 
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and RF, we use default parameters from scikit-learn.35 For 
RNN and LSTM, we use a hidden layer with 32 units, batch 
size of 248, maximum epoch of 50, and early stopping of 15 
epochs (see Supplemental Appendix F for additional experi-
mental details).

Results

We now discuss results on learning data properties and BG 
forecasting to test improved simulated data performance.

Results on Learning Data Properties of Missing 
Data and Error

Table 3 shows results for missing data and error prediction 
on all real data sets. For predicting the start of missing 
intervals, a prediction is only correct if the first timepoints 
in a sequence of missing datapoints are predicted. While 
this is a strict evaluation (as the time identified may be 
slightly early or slightly late), our method performs better 
than the AUROC baseline of 0.5. Our method has the best 
improvements over the mean baseline for the AUPRC on 
OpenAPS and RCT compared with OhioT1DM and Racial-
Disparity. For OhioT1DM, the performance is likely due to 
its smaller size, while for Racial-Disparity, its heteroge-
neous population coupled with a lower sampling rate 
(which may not be the right timescale for observing pat-
terns) makes learning challenging. These challenges also 
likely apply when predicting the duration of missing inter-
vals as our method performs better for OpenAPS and RCT 
compared with OhioT1DM and Racial-Disparity, which 
have a higher RMSE.

Similarly, when predicting error, we had the worst perfor-
mance on Racial-Disparity which suggests that its heteroge-
neity makes learning challenging. We performed best on 
OpenAPS due to the use of synthetic ground truth which cre-
ates error values closer to CGM data compared with other 
data sets where actual ground truth is present.

Results for Blood Glucose Forecasting on 
Simulated Data

We now turn to the task of BG forecasting, comparing our 
approach to baseline methods for adding error and dropout. 
To understand how dropout and error individually affect per-
formance, we test them separately. For each property (eg, 
error), we compare our approach (Error-predicted) to base-
lines and raw simulated data. As shown in Figure 2, raw 
simulated data have the largest mRMSEdiff , which in practice 
would lead to erroneous forecasts of future BG and subse-
quently incorrect insulin dosing. For dropout, Dropout-
predicted had the smallest mRMSEdiff , outperforming 
dropout-random in all cases except for LSTM on OpenAPS. 
For error, Error-predicted had a smaller mRMSEdiff  com-
pared with Error-Gaussian except for RF on OpenAPS but 
ranks second compared with Error-CGM. However, Error-
CGM requires a significant amount of domain knowledge 
coupled with the use of multiple sensors, while our approach 
is purely data-driven.

Next, we test BG forecasting performance when our 
methods for dropout and error are combined, showing that 
both are needed to further bring simulated data performance 
closer to real data. For each error module, we vary the drop-
outs applied to it and report the mRMSEdiff  in Tables 4 and 5. 
We test for significant differences between Error-Predicted 
and each error model across dropouts using a t-test (eg, 
Error-CGM + Dropout-Predicted against Error-Predicted + 
Dropout-Predicted). When testing between Error-Gaussian 
and Error-Predicted, Error-Predicted was significantly bet-
ter than Error-Gaussian on OpenAPS (all P ≤ .004), RCT (all 
P ≤ .04) and Racial-Disparity (all P ≤ .002). Next, when 
comparing Error-Predicted with Error-CGM, Error-CGM 
performed better in two of four ML models for (1) Dropout-
Predicted on OpenAPS (P ≤ .05) and (2) Dropout-Random 
for RCT (P ≤ .005). On Racial-Disparity though, Error-
Predicted was significantly better in three of four ML models 
for Dropout-Predicted (P ≤ .04). This suggests that Error-
Predicted performs better when the data set properties are 

Table 3. Results for Predicting the Start of Missing Intervals, Duration of Missing Intervals, and the CGM Error for Real Data Sets.

Data sets

Missing data

ErrorStart of interval Duration

Mean AUROC Mean AUPRC RMSE (minutes) RMSE (mg/dL)

OhioT1DM 0.66 0.20 (0.12) 23.27 13.87
OpenAPS 0.70 0.55 (0.30) 14.50 5.07a

RCT 0.68 0.22 (0.07) 18.54 21.94
Racial-Disparity 0.62 0.38 (0.30) 22.19 31.53

The value in parenthesis is the mean AUPRC baseline, which is the percentage of positive samples in test data.
Abbreviations: CGM, continuous glucose monitor; AUROC, area under the receiver operating curve; AUPRC, area under the precision-recall curve; 
RMSE, root mean square error; T1DM, type 1 diabetes mellitus.
aWe generated ground truth for OpenAPS, unlike the other data sets where ground truth was present.
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significantly different from the one Error-CGM was modeled 
on. This is supported by evidence showing a difference in 
glucose variability, control, and diabetes management in the 
population Error-CGM was modeled with compared with the 
population of the Racial-Disparity data set (heterogeneous 
by age15 and majority black population14). For OhioT1DM, 
Error-Predicted was better than Error-Gaussian in two of 

four ML Models for Dropout-random (P ≤ .03) but per-
formed worse compared with Error-CGM (all P ≤ .02). 
Overall, in most comparisons for OpenAPS, RCT, and 
Racial-Disparity, there were no significant differences in 
mRMSEdiff  between Error-CGM and Error-Predicted, which 
means that we achieved the same performance, while not 
requiring the same amount of background knowledge.

Figure 2. Mean RMSE difference between real and simulated data sets (mRMSEdiff ) with missingness (left) and error (right). A smaller 
difference indicates results closer to real data. (a) Performance on OhioT1DM, (b) performance on OpenAPS, (c) performance on RCT, 
and (d) performance on Racial-Disparity.
Abbreviations: RMSE, root mean square error; T1DM, type 1 diabetes mellitus; REG, linear regression; RF, random forest; RNN, recurrent neural 
network; LSTM, long short-term memory.
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Table 4. Mean RMSE Difference Between Real and Simulated Data Sets (mRMSEdiff ) When Combining Dropout and Error.

OhioT1DM OpenAPS

 REG RF RNN LSTM REG RF RNN LSTM

Raw simulated BG 21.29 16.78 17.71 13.42 17.15 15.66 13.81 7.34

Error Dropout  

Gaussian Random 14.60a 12.38 15.11a 12.16 9.95a 9.18a 10.31a 9.97a

Predicted 14.83 13.15 14.87 10.11 8.91a 8.74a 8.75a 6.98a

CGM Random 8.48b 6.88b 7.76b 5.46b 3.37 4.11b 2.69 2.07
Predicted 9.76b 8.28b 8.22b 7.30b 1.87 3.24b 0.96b 2.88

Predicted Random 12.75 12.38 12.77 11.10 2.97 6.88 4.13 3.55
Predicted 13.19 11.70 12.47 9.60 2.16 5.50 2.91 3.00

Lower values indicate performance closer to real data. The best performance within each error group is shown in bold.
Abbreviations: RMSE, root mean square error; REG, linear regression; RF, random forest; RNN, recurrent neural network; LSTM, long short-term 
memory; BG, blood glucose; CGM, continuous glucose monitor.
aError-Predicted is significantly better (P < .05) when compared with either Error-CGM or Error-Gaussian across all dropout modules.
bError-Predicted is significantly worse (P < .05) when compared with either Error-CGM or Error-Gaussian across all dropout modules.

Table 5. Mean RMSE Difference Between Real and Simulated Data Sets (mRMSEdiff ) When Combining Dropout and Error.

RCT Racial-Disparity

 REG RF RNN LSTM REG RF RNN LSTM

Raw simulated BG 17.34 16.74 16.79 14.91 14.76 14.96 15.01 12.94

Error Dropout  

Gaussian Random 10.99a 10.55a 11.64a 11.61a 8.95a 11.68a 9.90a 9.94a

Predicted 9.88a 9.98a 9.64a 9.79a 8.39a 12.39a 9.31a 10.08a

CGM Random 4.60 5.84b 4.72b 4.45 2.67 6.92 3.82 3.93
Predicted 3.53 4.90b 3.56 2.89 5.37a 9.22 6.31a 6.93a

Predicted Random 4.60 9.26 7.00 5.58 3.97 9.49 4.65 5.19
Predicted 4.30 8.30 5.80 5.20 1.66 5.75 2.29 0.78

Lower values indicate performance closer to real data. The best performance within each error group is shown in bold.
Abbreviations: RMSE, root mean square error; REG, linear regression; RF, random forest; RNN, recurrent neural network; LSTM, long short-term 
memory; BG, blood glucose; CGM, continuous glucose monitor.
aError-Predicted is significantly better (P < .05) when compared with either Error-CGM or Error-Gaussian across all dropout modules.
bError-Predicted is significantly worse (P < .05) when compared with either Error-CGM or Error-Gaussian across all dropout modules.

Our combination of methods reduced mRMSEdiff  from: 
(1) 21.29 to 13.19 for OhioT1DM, (2) 17.15 to 2.16 for 
OpenAPS, (3) 17.34 to 4.30 for RCT, and (4) 15.01 to 2.29 
for Racial-Disparity on the ML model with the largest 
mRMSEdiff  on raw simulated BG. This improvement in per-
formance provides a more realistic estimation of perfor-
mance when using simulated data for testing new algorithms 
for diabetes-related applications.

Discussion

Simulated BG data are vital for evaluating the performance 
of BG control and forecasting algorithms as it enables test-
ing under varied conditions (eg, different meal schedules 
and exercise). However, current simulation methods require 

prior knowledge and do not guarantee the same performance 
as real data or replicate data without understanding how data 
properties affect performance. To address this gap, we intro-
duce DAS, a modular data-driven approach to simulation 
that allows us to learn specific properties of CGM data and 
encode them into simulated BG data sets to bring perfor-
mance closer to real data. All code will be made available on 
publication. A limitation of our work is the need for ground 
truth for learning error models. While we use finger-stick 
BG as ground truth, these values are also subject to error.28,29 
This in turn affects our error estimates as our model learns 
how CGM differs from finger-tick measurements rather 
than actual BG. In future work, we plan to explore other 
ways of learning error models without requiring ground 
truth. Second, as in many ML applications, our approach 
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requires sufficient data to learn reliable models for missing-
ness and error. OhioT1DM was significantly smaller than 
the others tested, and performance gains on it were thus cor-
respondingly smaller.

Conclusions

We demonstrate that DAS learns the patterns of missing 
data and errors in several real diabetes data sets. On BG 
forecasting, adding these properties brings performance on 
simulated data closer to real data compared with other base-
lines in most of our real data sets. This has real-world impli-
cations as it allows researchers to test algorithms with 
simulated BG that provides realistic estimates of perfor-
mance and better understand how different features of the 
data contribute to performance on ML tasks. Our results 
motivate a hybrid approach for simulating time series data 
sets to enable greater control over the types of properties 
encoded in them. Future work will involve adding more 
properties like non-stationarity to further aid in simulating 
more realistic BG values and helping researchers debug 
their algorithms. Code is available at: https://github.com/
health-ai-lab/Data-Augmented-Simulation

Abbreviations

AUPRC, area under the precision-recall curve; AUROC, area under 
the receiver operating curve; BG, blood glucose; CGM, continuous 
glucose monitor; DAS, data-augmented simulation; GAN, genera-
tive adversarial network; LSTM, long short-term memory; REG, 
linear regression; RF, random forest; RMSE, root mean square 
error; RNN, recurrent neural network; T1D, type 1 diabetes.
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